Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Navigating uncertainty is a critical challenge in all fields of science, especially when translating knowledge into real-world policies or management decisions. However, the wide variance in concepts and definitions of uncertainty across scientific fields hinders effective communication. As a microcosm of diverse fields within Earth Science, NASA’s Carbon Monitoring System (CMS) provides a useful crucible in which to identify cross-cutting concepts of uncertainty. The CMS convened the Uncertainty Working Group (UWG), a group of specialists across disciplines, to evaluate and synthesize efforts to characterize uncertainty in CMS projects. This paper represents efforts by the UWG to build a heuristic framework designed to evaluate data products and communicate uncertainty to both scientific and non-scientific end users. We consider four pillars of uncertainty: origins, severity, stochasticity versus incomplete knowledge, and spatial and temporal autocorrelation. Using a common vocabulary and a generalized workflow, the framework introduces a graphical heuristic accompanied by a narrative, exemplified through contrasting case studies. Envisioned as a versatile tool, this framework provides clarity in reporting uncertainty, guiding users and tempering expectations. Beyond CMS, it stands as a simple yet powerful means to communicate uncertainty across diverse scientific communities.more » « less
-
null (Ed.)Abstract. We apply airborne measurements across three seasons(summer, winter and spring 2017–2018) in a multi-inversion framework toquantify methane emissions from the US Corn Belt and Upper Midwest, a keyagricultural and wetland source region. Combing our seasonal results withprior fall values we find that wetlands are the largest regional methanesource (32 %, 20 [16–23] Gg/d), while livestock (enteric/manure; 25 %,15 [14–17] Gg/d) are the largest anthropogenic source. Naturalgas/petroleum, waste/landfills, and coal mines collectively make up theremainder. Optimized fluxes improve model agreement with independentdatasets within and beyond the study timeframe. Inversions reveal coherentand seasonally dependent spatial errors in the WetCHARTs ensemble meanwetland emissions, with an underestimate for the Prairie Pothole region butan overestimate for Great Lakes coastal wetlands. Wetland extent andemission temperature dependence have the largest influence on predictionaccuracy; better representation of coupled soil temperature–hydrologyeffects is therefore needed. Our optimized regional livestock emissionsagree well with the Gridded EPA estimates during spring (to within 7 %) butare ∼ 25 % higher during summer and winter. Spatial analysisfurther shows good top-down and bottom-up agreement for beef facilities (withmainly enteric emissions) but larger (∼ 30 %) seasonaldiscrepancies for dairies and hog farms (with > 40 % manureemissions). Findings thus support bottom-up enteric emission estimates butsuggest errors for manure; we propose that the latter reflects inadequatetreatment of management factors including field application. Overall, ourresults confirm the importance of intensive animal agriculture for regionalmethane emissions, implying substantial mitigation opportunities throughimproved management.more » « less
An official website of the United States government
